Human-to-dog transmission of SARS-CoV-2, Colombia
5 min read
Reina, J. E. SARS-CoV-2, una nueva zoonosis pandémica que amenaza al mundo. Vacunas 21, 17–22 (2020).
World Health Organization. WHO coronavirus (COVID-19) Dashboard. WHO coronavirus (COVID-19) dashboard with vaccination data. Who 1–5 (2021).
Sit, T. H. C. et al. Infection of dogs with SARS-CoV-2. Nature 586, 776–778 (2020).
Elbe, S. & Buckland-Merrett, G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob. Challenges 1, 33–46 (2017).
Premkumar, L. et al. The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci. Immunol. 5, 1–9 (2020).
Gobeil, S.M.-C. et al. Effect of natural mutations of SARS-CoV-2 on spike structure, conformation and antigenicity. bioRxiv Prepr. Serv. Biol. https://doi.org/10.1101/2021.03.11.435037 (2021).
Goumenou, M., Spandidos, D. A. & Tsatsakis, A. Possibility of transmission through dogs being a contributing factor to the extreme COVID-19 outbreak in North Italy. Mol. Med. Rep. 21, 2293–2295 (2020).
Bosco-Lauth, A. M. et al. Experimental infection of domestic dogs and cats with SARS-CoV-2: Pathogenesis, transmission, and response to reexposure in cats. Proc. Natl. Acad. Sci. USA 117, 26382–26388 (2020).
Jangra, S. et al. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe. (2021).
Wibmer, C. K. et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. https://doi.org/10.1038/s41591-021-01285-x (2021).
Focosi, D. & Maggi, F. Neutralising antibody escape of SARS-CoV-2 spike protein: Risk assessment for antibody-based COVID-19 therapeutics and vaccines. Rev. Med. Virol. https://doi.org/10.1002/rmv.2231 (2021).
West, A. P., Barnes, C. O., Yang, Z. & Bjorkman, P. J. SARS-CoV-2 lineage B.1.526 emerging in the New York region detected by software utility created to query the spike mutational landscape. https://doi.org/10.1101/2021.02.14.431043.
Annavajhala, M. K. et al. A novel and expanding SARS-CoV-2 variant, B.1.526, identified in New York. https://doi.org/10.1101/2021.02.23.21252259.
Federation Drug American (FDA). Fact sheet for health care providers emergency use authorization of bamlanivimab and etesevimab. 1–36 (2020).
O’Toole, Á. et al. pangolin: Lineage assignment in an emerging pandemic as an epidemiological tool. in prep. https://doi.org/10.1093/ve/veab064/6315289. (2021).
Rambaut, A. et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol. 5, 1403–1407 (2020).
Stevanovic, V. et al. Seroprevalence of SARS-CoV-2 infection among pet animals in Croatia and potential public health impact. Transbound. Emerg. Dis. 00, 1–7 (2020).
Perisé-Barrios, A. J. et al. Humoral responses to SARS-CoV-2 by healthy and sick dogs during the COVID-19 pandemic in Spain. Vet. Res. 52, 1–11 (2021).
Jangra, S. et al. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2, e283–e284 (2021).
Cele, S. et al. Escape of SARS-CoV-2 501YV2 from neutralization by convalescent plasma. Nature 593, 142–146 (2021).
Andreano, E. et al. SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma. bioRxiv Prepr. Serv. Biol. https://doi.org/10.1101/2020.12.28.424451 (2020).
Fernández, A. Structural impact of mutation D614G in SARS-CoV-2 spike protein: Enhanced infectivity and therapeutic opportunity. ACS Med. Chem. Lett. 11, 1667–1670 (2020).
Zhang, L. et al. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat. Commun. 11, 1–9 (2020).
Zhang, Z. et al. The molecular basis for SARS-CoV-2 binding to dog ACE2. Nat. Commun. 12, 4195 (2021).
Naveca, F. G. et al. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence. Nat. Med. 27, 1230–1238 (2021).
Faria, N. R. et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science (80-). 372, 815–821 (2021).
du Plessis, L. et al. Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK. Science (80-). 371, 708–712 (2021).
Early introductions and transmission of SARS-CoV-2 variant B.1.1.7 in the United States Graphical abstract. https://doi.org/10.1016/j.cell.2021.03.061.
Mallapaty, S. COVID mink analysis shows mutations are not dangerous—Yet. Nature 587, 340–341 (2020).
Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans.
World Health Organization. SARS-CoV-2 mink-associated variant strain—Denmark. https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON301. (Accesed 31 July 2021)
Luan, J., Lu, Y., Jin, X. & Zhang, L. Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. (2020). https://doi.org/10.1016/j.bbrc.2020.03.047.
Corman, V. et al. Diagnostic detection of 2019-nCoV by real-time RT-PCR. https://virologie-ccm.charite.de/en/ (2020). (Accesed 16 Apr 2021)
Miller, J. M. et al. Guidelines for Safe work practices in human and animal medical diagnostic laboratories recommendations of a CDC-convened, Biosafety Blue Ribbon Panel Centers for Disease Control and Prevention MMWR Editorial and Production Staff MMWR Editorial Board. Centers Dis. Control Prev. Morb. Mortal. Wkly. Rep. 61, 105 (2012).
World Health Organization. Laboratory Biosafety Manual 3rd edn. (World Health Organization, 2004).
du Sert, N. P. et al. The arrive guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020).
Katoh, K. & Frith, M. C. Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics 28, 3144–3146 (2012).
Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 14, 587–589 (2017).
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
Rambaut, A. FigTree. http://tree.bio.ed.ac.uk/software/figtree/. (Accesed 11 July 2021)
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 1–11. https://doi.org/10.1038/s41586-021-03819-2 (2021).
Mirdita, M., Steinegger, M. & Söding, J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics 35, 2856–2858 (2019).
Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220 (2020).
Du, X. et al. Insights into protein–ligand interactions: Mechanisms, models, and methods. Int. J. Mol. Sci. 17, 1–34 (2016).
Dolinsky, T. J., Nielsen, J. E., McCammon, J. A. & Baker, N. A. PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 (2004).