September 23, 2023

Chats du Monde

World of Health & Pet

Human-to-dog transmission of SARS-CoV-2, Colombia

5 min read
  • Reina, J. E. SARS-CoV-2, una nueva zoonosis pandémica que amenaza al mundo. Vacunas 21, 17–22 (2020).

    CAS 
    Article 

    Google Scholar
     

  • World Health Organization. WHO coronavirus (COVID-19) Dashboard. WHO coronavirus (COVID-19) dashboard with vaccination data. Who 1–5 (2021).

  • Sit, T. H. C. et al. Infection of dogs with SARS-CoV-2. Nature 586, 776–778 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Elbe, S. & Buckland-Merrett, G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob. Challenges 1, 33–46 (2017).

    Article 

    Google Scholar
     

  • Premkumar, L. et al. The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci. Immunol. 5, 1–9 (2020).

    Article 

    Google Scholar
     

  • Gobeil, S.M.-C. et al. Effect of natural mutations of SARS-CoV-2 on spike structure, conformation and antigenicity. bioRxiv Prepr. Serv. Biol. https://doi.org/10.1101/2021.03.11.435037 (2021).

    Article 

    Google Scholar
     

  • Goumenou, M., Spandidos, D. A. & Tsatsakis, A. Possibility of transmission through dogs being a contributing factor to the extreme COVID-19 outbreak in North Italy. Mol. Med. Rep. 21, 2293–2295 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bosco-Lauth, A. M. et al. Experimental infection of domestic dogs and cats with SARS-CoV-2: Pathogenesis, transmission, and response to reexposure in cats. Proc. Natl. Acad. Sci. USA 117, 26382–26388 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Jangra, S. et al. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe. (2021).

  • Wibmer, C. K. et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. https://doi.org/10.1038/s41591-021-01285-x (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Focosi, D. & Maggi, F. Neutralising antibody escape of SARS-CoV-2 spike protein: Risk assessment for antibody-based COVID-19 therapeutics and vaccines. Rev. Med. Virol. https://doi.org/10.1002/rmv.2231 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • West, A. P., Barnes, C. O., Yang, Z. & Bjorkman, P. J. SARS-CoV-2 lineage B.1.526 emerging in the New York region detected by software utility created to query the spike mutational landscape. https://doi.org/10.1101/2021.02.14.431043.

  • Annavajhala, M. K. et al. A novel and expanding SARS-CoV-2 variant, B.1.526, identified in New York. https://doi.org/10.1101/2021.02.23.21252259.

  • Federation Drug American (FDA). Fact sheet for health care providers emergency use authorization of bamlanivimab and etesevimab. 1–36 (2020).

  • O’Toole, Á. et al. pangolin: Lineage assignment in an emerging pandemic as an epidemiological tool. in prep. https://doi.org/10.1093/ve/veab064/6315289. (2021).

  • Rambaut, A. et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol. 5, 1403–1407 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Stevanovic, V. et al. Seroprevalence of SARS-CoV-2 infection among pet animals in Croatia and potential public health impact. Transbound. Emerg. Dis. 00, 1–7 (2020).

    CAS 

    Google Scholar
     

  • Perisé-Barrios, A. J. et al. Humoral responses to SARS-CoV-2 by healthy and sick dogs during the COVID-19 pandemic in Spain. Vet. Res. 52, 1–11 (2021).

    Article 

    Google Scholar
     

  • Jangra, S. et al. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2, e283–e284 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Cele, S. et al. Escape of SARS-CoV-2 501YV2 from neutralization by convalescent plasma. Nature 593, 142–146 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Andreano, E. et al. SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma. bioRxiv Prepr. Serv. Biol. https://doi.org/10.1101/2020.12.28.424451 (2020).

    Article 

    Google Scholar
     

  • Fernández, A. Structural impact of mutation D614G in SARS-CoV-2 spike protein: Enhanced infectivity and therapeutic opportunity. ACS Med. Chem. Lett. 11, 1667–1670 (2020).

    Article 

    Google Scholar
     

  • Zhang, L. et al. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat. Commun. 11, 1–9 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Zhang, Z. et al. The molecular basis for SARS-CoV-2 binding to dog ACE2. Nat. Commun. 12, 4195 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Naveca, F. G. et al. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence. Nat. Med. 27, 1230–1238 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Faria, N. R. et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science (80-). 372, 815–821 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • du Plessis, L. et al. Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK. Science (80-). 371, 708–712 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Early introductions and transmission of SARS-CoV-2 variant B.1.1.7 in the United States Graphical abstract. https://doi.org/10.1016/j.cell.2021.03.061.

  • Mallapaty, S. COVID mink analysis shows mutations are not dangerous—Yet. Nature 587, 340–341 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans.

  • World Health Organization. SARS-CoV-2 mink-associated variant strain—Denmark. https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON301. (Accesed 31 July 2021)

  • Luan, J., Lu, Y., Jin, X. & Zhang, L. Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. (2020). https://doi.org/10.1016/j.bbrc.2020.03.047.

  • Corman, V. et al. Diagnostic detection of 2019-nCoV by real-time RT-PCR. https://virologie-ccm.charite.de/en/ (2020). (Accesed 16 Apr 2021)

  • Miller, J. M. et al. Guidelines for Safe work practices in human and animal medical diagnostic laboratories recommendations of a CDC-convened, Biosafety Blue Ribbon Panel Centers for Disease Control and Prevention MMWR Editorial and Production Staff MMWR Editorial Board. Centers Dis. Control Prev. Morb. Mortal. Wkly. Rep. 61, 105 (2012).


    Google Scholar
     

  • World Health Organization. Laboratory Biosafety Manual 3rd edn. (World Health Organization, 2004).


    Google Scholar
     

  • du Sert, N. P. et al. The arrive guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020).

    Article 

    Google Scholar
     

  • Katoh, K. & Frith, M. C. Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics 28, 3144–3146 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 14, 587–589 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Rambaut, A. FigTree. http://tree.bio.ed.ac.uk/software/figtree/. (Accesed 11 July 2021)

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 1–11. https://doi.org/10.1038/s41586-021-03819-2 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Mirdita, M., Steinegger, M. & Söding, J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics 35, 2856–2858 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Du, X. et al. Insights into protein–ligand interactions: Mechanisms, models, and methods. Int. J. Mol. Sci. 17, 1–34 (2016).

    CAS 

    Google Scholar
     

  • Dolinsky, T. J., Nielsen, J. E., McCammon, J. A. & Baker, N. A. PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 (2004).

    CAS 
    Article 

    Google Scholar
     

  • chatsdumonde.net © All rights reserved. | Newsphere by AF themes.